Lecture 7 EN. 553.744 Prof. Luana Ruiz

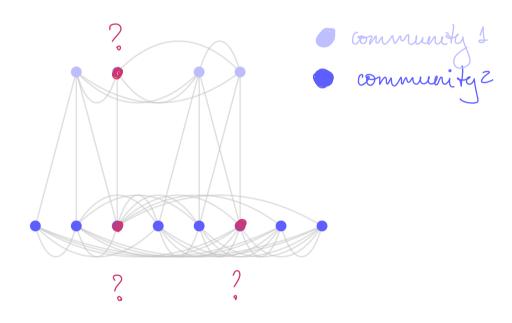
Today:

Community detection:

- info theoretic threshold - GNNs

- CSBM - SPMM

- feature-auore spectral emb.



- Information-theoretic threshold
 - Nhat happens when $p \approx q$ in the balanced SBM with C=2?

When p=q, we actually have an Erdős-Rényi graph, in which the edge probability is constant for all nodes; there are no communities to distinguish

But even when pfq, there is a region around p=q where defection of communities is impossible in an information theoretic sense:

• Let SNR = $(p-q)^2$ degree discreponcy in \neq subgraphs $2(p+q) = \infty$ average degree ("noise")

·If SNR < 1, almost exact recovery detection is impossible; even with infinite time & resources, no aborithm can defect comms in this case.

For the pf, check the works of Massoulié (2014)

Mossel (2014)

E.g.: sparse graphs

$$P = \frac{a}{n} \quad j \quad q = \frac{6}{n}$$

$$P = \frac{\alpha}{n}$$
; $q = \frac{6}{n}$ $\frac{|\mathcal{E}|}{n^2} \to 0$ as $n \to \infty$

SNR =
$$\left(\frac{a}{n} - \frac{6}{n}\right)^2 = \frac{(a-6)^2}{a(a+6)}$$

$$\frac{2(a+6)}{n}$$

$$SNR_{P_{1}q} < \frac{1}{n} \rightarrow \frac{(a-6)^{2}}{\sqrt{2(a+6)}} < \frac{1}{\sqrt{2}}$$

in this case,

impossible

in this case,
comm. detection is =)
$$\frac{(a-6)^2}{2(a+6)} < 1$$

impossible

Contextual stochastic block model (C-SBM)

An SBM graph, but with node features drawn from a Gaussian mixture:

•)
$$A: A_{ij} = A_{ji} \sim \text{Bein}(P_{ij})$$
 $P = \begin{bmatrix} p.11^{7} & q.11^{7} \\ q.11^{7} & p.11^{7} \end{bmatrix}$
 $(Y \in \{-1, 13^{n}\} B \in \Re^{2 \times 2})$

o)
$$X_i \sim \sqrt{n} Y_{i...u} + \frac{Z_i}{\sqrt{d}}$$
 $u \sim \mathcal{N}(0, I_{d/d})$ $Z_i \sim \mathcal{N}(0, I_d)$

$$X_i \mid Y_i, u \sim \mathcal{N}\left(\pm \sqrt{\frac{\mu}{n}} \cdot u, \frac{I_d}{d}\right)$$

Correction to defin in Lec. 4

Feature - aware spectral embeddings

Let G be a graph w/adjacency A and node features XER **

- · Diagnalize XXT ER "x as V_1/V, T
- · Pick the top K eigenvectors VK
- Define $V_{C+K} = \begin{bmatrix} V_C | V_K^1 \end{bmatrix}$ (column wise concatenation)

$$\frac{(a-b)^{2}}{2(a+6)} + \frac{\mu^{2}d}{n} > 1 = comm. detec.$$

$$\frac{(a-b)^{2}}{2(a+6)} + \frac{\mu^{2}d}{n} > 1 = comm. detec.$$
tion possible
in info theoretic
sense

=> When pxq, detection is still possible as long as means are sufficiently separated (high µ andor high d)

Computational thresholds for spectral clustering (non-rigorous)

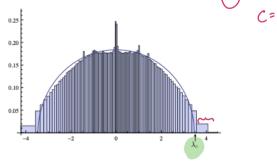


FIG. 1: The spectrum of the adjacency matrix of a sparse network generated by the block model (excluding the zero eigenvalues). Here n=4000, $c_{\rm in}=5$, and $c_{\rm out}=1$, and we average over 20 realizations. Even though the eigenvalue $\lambda_c=3.5$ given by (2) satisfies the threshold condition (1) and lies outside the semicircle of radius $2\sqrt{c}=3.46$, deviations from the semicircle law cause it to get lost in the bulk, and the eigenvector of the second largest eigenvalue is uncorrelated with the community structure. As a result, spectral algorithms based on A are unable to identify the communities in this case.

r Spectral redemption (figure taken from Krzakala et al. (2013))

(> in practice, spectral aloos. fail above the info theoretic threshold (sometimes significantly above!)

Can GNNs help?

In the example above, having access to C'>C eigenvectors might have helped

missing informative eigenvalues "lest in the bulk"

Back to Lecture 3: Expressivity of graph convolutions

{ (Thm) If (\hat{x}) ; $\neq 0 \ \forall i \ \text{and} \ \lambda_i \neq \lambda_j \ \forall i \neq j$, there always exist $K \leq n$ coefficients h_0, h_1, \dots, h_{K-1} s.f. $y = H(S) \cdot x$

Let y be our community assignment vector; as long as $(\hat{x})_i \neq 0 \; \forall i$ & $\lambda_i \neq \lambda_j \; \forall \; i,j$, \exists a graph conv. (1-layer linear GNN) that approximate y.

Conv. (semi-supervised) community assignment vector;

as long as $(\hat{x})_i \neq 0 \; \forall i$ & $\lambda_i \neq \lambda_j \; \forall \; i,j$, \exists a graph conv. (1-layer linear GNN) that approximate y.

Conv. (1-layer linear GNN) for (semi-supervised) community assignment vector;

T.c., we solve: surrogate of C-1 loss

min $\Sigma e([f(A,X)]_i, Y_i)$ f ies cne-hot comm. vector

some parametric of node i, $(Y_{ic}]=1$ if

for of A,Xi in C

where $f(A,X) = \Phi_{\mathcal{H}}(A,X) \longrightarrow ann w/ learnable$ parameters \mathcal{H}

(see Lec. 5)

A note on sparse matrix-vector multiplications: $S \times S^{k-1} \times S^{k-2} \times S$
The usual material operation in PyTorch requires $O(n^2)$ to compute $Sx : (Sx)_i = \sum_{j=1}^{\infty} (A_{ij}) x_j$ for $1 \le i \le n$
n times
Typically the GSOS (i.e., A, L, etc.) is a sparse nxn matrix. I.e., E << 1

6 181 nonzero entries => 0(181) complexity possible

But: to achieve it, need to use sparse tensor (of S) representation & sparse matrix multiplication (+ operations in Py Torch)

How sparse materials work

- Coordinate (coo) representation

$$A = \begin{bmatrix} 112 & 0 & 26 & 0 \\ 0 & 0 & 19 & 19 \\ 26 & 19 & 0 & 0 \\ 0 & 14 & 0 & 7 \end{bmatrix}$$

becomes: (0,0,12) con we curb index repetition? (0,2,26)

(1, 2, 19)

0

-o Compressed sparse row (CSR) representation Compressed sparse row (CSR) representation

printer 0 2 3

column 0 1 2 3

value 12 26 19 19

for each row (i):

for (k): pointer (i) to pointer (i+1)-1:

y(i) = y(i) + value (k). x (column (k))

total operations: $\sum_{i=1}^{n} |V_{i}| = \sum_{i=1}^{n} d_{i} = 11^{T} A_{1} = 161$

In PyTorch: tatransform to a sparse tensor:

S. to_sparse() or S. to_sparse_csr()

matrix vector mult. as before: Sax
or forch. mv(S,x)
for both coo
csr

Feel free to use these in your HW?