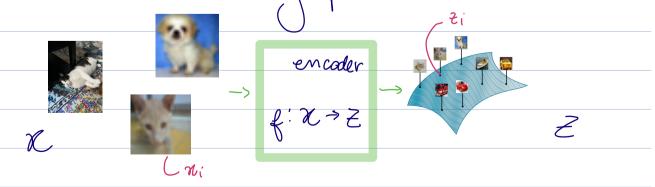
- o Graph generation

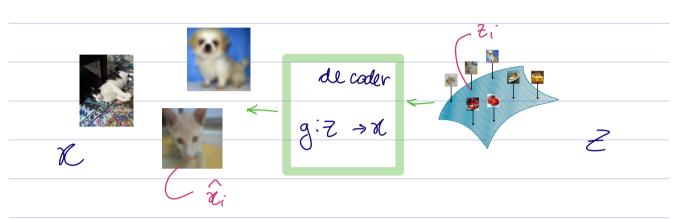
- · Applications: drug discovery
 - materials design
 - soud network modeling
- "general" generative modeling typically consists of two components:
 - an encoder - a decoder

e.g.: AES, VAES, GANS, affusion...

· The encoder's job is to map the data to some (low) dimensional embedding space.



. The decoder's job is to map from embedding space back to ambient space.



· Both are trained simultaneously; the goal is for the decoder artputs to match the encoder inputs:

min $l(z_i, \hat{z}_i)$ some los.

· At generation time, we generale samples by

sample ->	de coder	→ unseen
2'~ Z	g:7 →X	×, ;
	0 -	P(x) (4,9)
		0,0

4. Ultimately, we want p(x'1f,a)—the modeled distribution—to be close to p(x)—the data distribution.

Idea: maximize likelihood of f,g for samples x ~ p(x)

 $max \in log p(x|f,g)$ $f,g \times p(x)$

Ly Most commonly 2 NN(0,1) in embedding space

Boule to graphs:

encoder: GNNs! Map graphs G to tensors
in 12 nxd or 12 d

Gonvolutional: GNN, GCN, SAGE, etc.

spectral: Chebnet, spectral GNN

WL-inspired: GIN & higher order GINs

attention-based: graphormer & variants

graphormer, etc...

· chastenge is the decoding step:

Fixing a size limit N, graphs con have as many as N nodes and N² edges! > impractical even for moderate n

been applied successfully to small graph generation (e.g. molecules)

Possuble solution: move a way from end to end simultaneous prediction (of N+N2 binary variables) and toward sequential/autoregressive prediction:

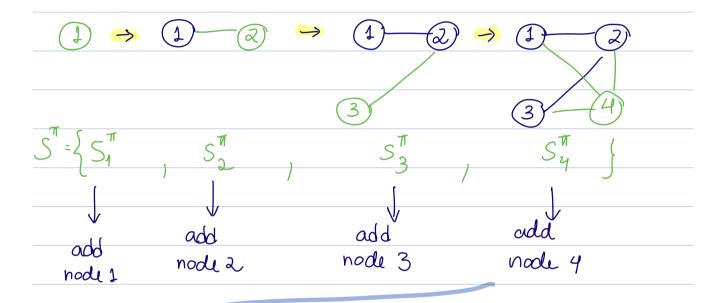
$$\frac{T}{P(x|\theta) = \prod_{t=1}^{T} P(x_t|x_1, ..., x_{t-1};\theta)}$$

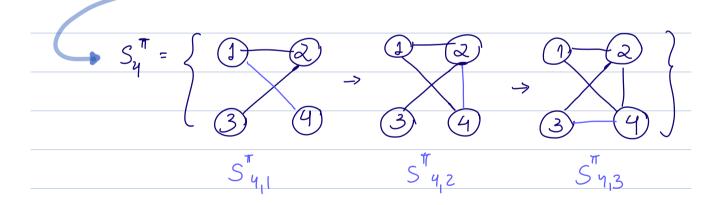
E.g.: x is a sentence; x_{t-1} is the urrent word, x_t the next

Here: X is a graph; x, is the next action Cadd node or add edge)

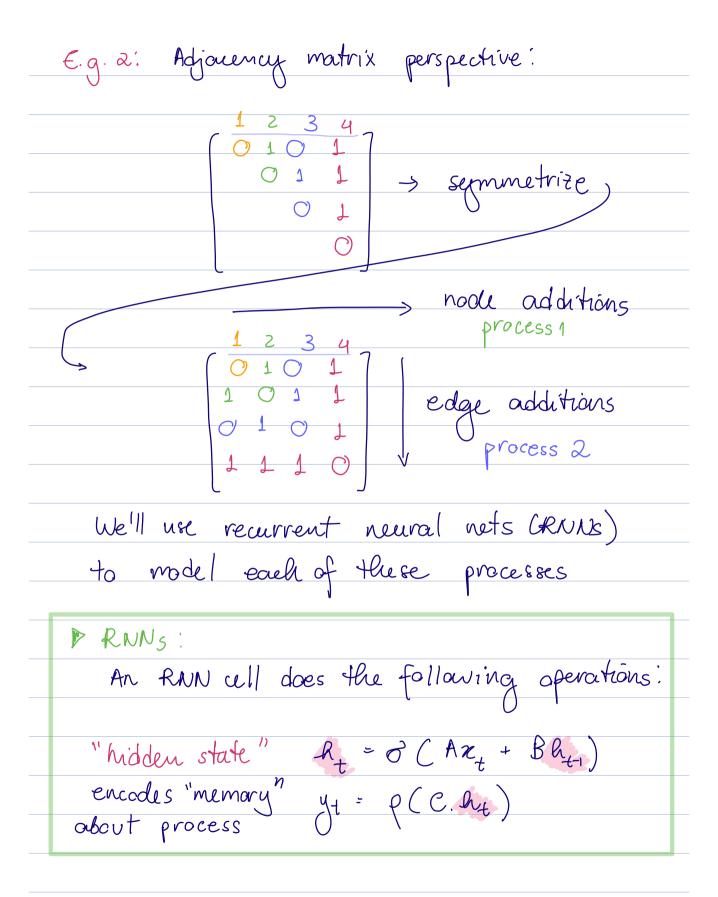
To Graph RNNs (Yau, Ying, Ren, Hamilton, Les Kovec, 2018)

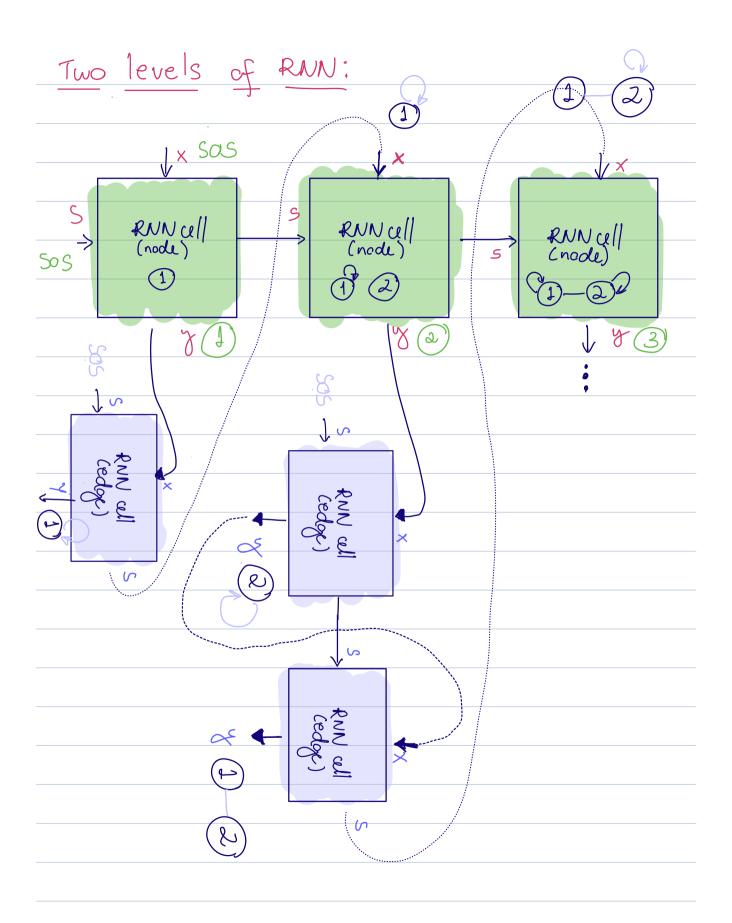
given a fined labeling TT= {1,2,..., n}, a graph can be mapped one-to-one to a requence of node and edge additions.





The sequence 5th has two levels: node additions; edge additions per node addition





SOS: start of seq. EOS: end of seq.

- Sequence ends when edge-level RNN ortputs 605 token
 - hodel works, but it is deterministic

We need y = p(x+1/2, ..., x+; 0)

Explicitly, instead of reusing yell Contput of edge RNN at +-1) as x_t (input of edge RNN at +), we will do:

 $x_t \sim y_{t-1}$

Seen as the probability of sampling the edge

Ne understand inference (sampling), but how to train? Teacher forcing.

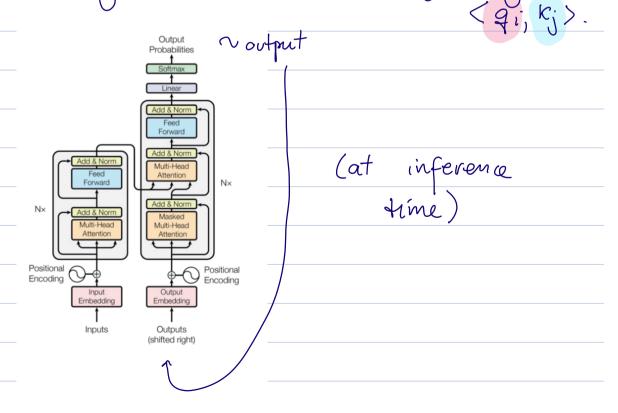
At training time, we know all y1, ..., y7 $mode| \rightarrow \hat{y} = p(x_1 | x_0; \theta) = y_1?$ model -> q2=p(x2 | x0, x1;0) = y2? $x_2 = y_2 \longrightarrow \text{model} \longrightarrow \hat{y_3} = p(x_3 | x_0 - x_2 : \theta) = y_3$? Comparison (and optimization) done by computing the binary cross entropy (BCE) loss $l(\hat{q}, y) = -(y log(\hat{q}) + (1-y)log(1-\hat{q}))$ - Transformers & graph transformers Consider a sequence X, X2, ..., XT For each token Xi, the attention layer

of a transformer layer does:

$$Q_i = \text{MLP}_q(x_i)$$
; $\mathcal{K}_i = \text{MLP}_k(x_i)$; $v_i = \text{MLP}_v(x_i)$

(<:, .> involves a normalization by softmax)

Obs: The attention layer is a 1-hop convolution (or message-passing layer) over a complete graph with learned edge weights



E.g. (train):

In: "Translate EN to PT: The caf is black."

Out: "O goto é preto."

Loss computation:

1) Translate EN to PT: The caf is black → qu = 0?

Translate EN to PT: The caf is black. 0 → y= gato?

3 Translate EN to PT: The caf is black 0 gato -> \quad \quad = ?

E.g. (fest):

In: "Translate PT to EN: O pato é preto." Out: 2

1) Translate PT to EN: O gato é preto -> ŷn = The

2) Translate PT to EN: O gato é preto. The -> ŷz = cat

Obs.: Note that in the transformer order does not mot
ter, while in language, it typically does. Sometimes
the tokens X, Xz,, XT are "augmented" with
ter, while in language, it typically does. Sometimes, the tokens X1, x2,, x7 are "augmented" with positional encodings, e.g. (x, 11], (xz z],, (x, 1T].
Adapting transformers to graphs
· Node features x1, x2,, xn become takens
· Adjauncy information con be incorporated in two ways:
in two ways:
G Attentión mask: we might only
Attention mask; we might only allow $\langle k_i, q_j \rangle \neq 0$ if $(i,j) \in \mathcal{E}$.
this is the graph attention
(GAT)
Or, we might compute
Or, we might compute $ w_{ij} = (\langle k_i, q_i \rangle A_{ij}]$ $ v_i = \sum_{j \in C_{n}} w_{ij} v_{j}$
$v_i = \sum_{i=1}^{n} w_{ii} v_i$
jecn] 'J U

Positional encodings: to the node features

X, Xz, ..., Xn, we might want to concatenate P.E.s (x, 1 p1), (xz 1 pz), [xn 1 pn]

Typical choices are:
- degree, pi=di = [A1]i

- eigenvectors, pi= ((vi): (vz): ... (vk]:]

- K-tength random wolk, tage kank, etc...

THANK YOU! (")

I hope your summer is as restful as Dandan's whole constence!

